2nd International Workshop on
Ga$_2$O$_3$ and Related Materials

12-15 September 2017, Parma, Italy

Co-organized by:
Dept. of Mathematical, Physical and Computer Sciences, Univ. of Parma
and
IMEM-CNR Institute, Parma

With the support of:
Italian Crystallographic Association (AIC)

Sponsored by:
Office of Naval Research
University of Parma
Dear attendees,

it is my great pleasure to welcome you to the 2nd International Workshop on Ga\textsubscript{2}O\textsubscript{3} and Related Materials. The general interest about wide-bandgap semiconducting oxides has increased enormously in the past two years, as witnessed by the growing number of publications in scientific journals. The original interest on the most studied β polymorph has been extended to less known crystallographic phases, which present very attractive properties, although unstable beyond a certain temperature limit. Furthermore, great advancements were made in terms of material quality and doping, so that today the fabrication of transistors and UV detectors with good performance is within reach.

IWGO 2017 is itself a witness of the great success of oxide semiconductors: the number of submissions practically doubled with respect to the first edition in Kyoto. The Workshop in Parma features 12 invited presentations, 43 oral contributions and 101 posters. Characterisation and materials sessions are still dominant, but there is a considerable increase of papers on processing and devices, also a sign of progress and maturity. I am confident that all of you will gain a lot from attending IWGO 2017, and I hope that you will make new friends and pick-up many new ideas. That will reinforce our oxide community and contribute to establishing the IWGO series.

I wish to close this short preface by thanking: the Office of Naval Research and the University of Parma for generously sponsoring IWGO 2017; the members of the International Programme Committee for their valuable suggestions and help in setting-up a first-class technical programme and, last but not least, my colleagues and friends of the Local Organising Committee for their tireless work during all phases of the Workshop organisation.

I wish you a very enjoyable time in Parma!

Sincerely,

Roberto Fornari
Chairman IWGO 2017
Dept. of Mathematical, Physical and Computer Sciences, University of Parma
IWGO 2017

Chair
Roberto Fornari, University of Parma, Italy

International Programme Committee
Martin Albrecht, IKZ Berlin, Germany
Oliver Bierwagen, PDI Berlin, Germany
Roberto Fornari, University of Parma, Italy
Masataka Higashiwaki, NICT, Tokyo, Japan
Ray-Hua Horng, National Chiao Tung University, Taiwan
Debdeep Jena, Cornell University, USA
Yoshinai Kumagai, Tokyo University of Agriculture and Technology, Japan
Vladimir I. Nikolaev, Ioffe Physical-Technical Institute, St. Petersburg, Russia
Takayoshi Oshima, Saga University, Japan
Marko Tadjer, NRL Washington, USA
Filip Tuomisto, Aalto University, Espoo, Finland
Chris G. Van de Walle, University of California, Santa Barbara, USA

Local Organising Committee
Andrea Baraldi, University of Parma
Matteo Bosi, IMEM-CNR, Parma
Claudio Ferrari, IMEM-CNR, Parma
Simona Galli, University of Insubria and Italian Crystallographic Association
Antonella Parisini, University of Parma
Maura Pavesi, University of Parma

IWGO International Steering Committee
R. Fornari, University of Parma, Italy, Co-chair
M. Higashiwaki, NICT Tokyo, Japan, Co-chair
O. Bierwagen, PDI Berlin, Germany
S. Fujita, University of Kyoto, Japan
V. I. Nikolaev, Ioffe Phys-Tech Institute, St. Petersburg, Russia
J. Speck, Univ. California Santa Barbara, USA
M. Tadjer, NRL Washington, USA
Presentation information

Presentation guidelines
Standard PC and audio-visual equipment are available for oral presentation. Speakers are kindly requested to check their PowerPoint files ahead of their own session. This is even more important if they want to use their personal laptop. Note that the organisers will not provide adapters for power suppliers nor Mac or HDMI connectors.
Allotted times are: 30 minutes for invited talks and 15 minutes for other presentations. In both cases leave at least two minutes for questions.

Poster presentation
We recommend authors to prepare their poster(s) according to the A0 format (about 84 cm wide and 119 cm high). Numbered boards will be available in the large room just above the conference hall. Authors are requested to set-up their poster(s) at the beginning of the meeting and to leave them on display during the entire Workshop. The poster discussion will take place in two separate sessions on Thursday 14th, at 10:30 (posters P1 - P50) and on Friday 15th at 10:30 (posters P51 - P101). Please identify your session and make sure that at least one author is available for discussion.
Workshop Programme

Tuesday September 12th

15:00 – 18:30 Opening Registration desk
18:30 – 19:30 Choir performance & Welcome party

Wednesday September 13th

09:00 – 09:30 Opening Ceremony
09:30 – 11:00 Session Cha1

Chair Martin Albrecht, IKZ Berlin, Germany

09:30 – 10:00 \textbf{I1 Electronic Defects in Epitaxial and Bulk β-Ga$_2$O$_3$ Characterized by Deep Level Defect Spectroscopy Methods}

S. Ringel
Electrical & Computer Engineering, The Ohio State University, Columbus, OH, USA

10:00 – 10:15 \textbf{O1 Donor states and deep levels in bulk and epitaxial β-Ga$_2$O$_3$}

M.E. Ingebrigtsen,1 L. Vines,1 G. Alfieri,2 A. Mihaila,2 U. Badstübner,2
B.G. Svensson,1 and A.Yu. Kuznetsov1

1University of Oslo, Department of Physics, Oslo, Norway
2ABB Corporate Research, Baden-Dättwil, Switzerland

10:15 – 10:30 \textbf{O2 Ozone MBE Growth and Characterization of Nitrogen-Doped β-Ga$_2$O$_3$ (010) Thin Films}

T. Kamimura,1 Y. Nakata,1 A. Kuramata,2 S. Yamakoshi,2 and M. Higashiwaki1

1National Institute of Information and Communications Technology, Tokyo, Japan
2Tamura Corporation, Saitama, Japan

10:30 – 10:45 \textbf{O3 Temperature-dependent thermal conductivity and diffusivity of a Mg-doped insulating-Ga$_2$O$_3$ single crystal along [100], [010] and [001]}

R. Mitdank,1 M. Handwerg,1,2 Z. Galazka,3 and S.F. Fischer1

1Humboldt-Universität zu Berlin, Berlin, Germany
2Helmholtz-Zentrum Berlin, Berlin, Germany
3Leibniz Institute for Crystal Growth, Berlin, Germany

10:45 – 11:00 \textbf{O4 Properties of N-implanted Monoclinic Ga$_2$O$_3$}

J.A. Freitas, Jr., M.J. Tadjer, N.A. Mahadik, J.C. Culbertson, and B.N. Feigelson
U.S. Naval Research Laboratory, Washington DC, USA

11:00 – 11:20 BREAK
11:20 – 11:50

Recent progress in EFG growth of Ga_2O_3

A. Kuramata
Tamura Corporation, Sayama, Saitama, Japan
Novel Crystal Technology, Inc., Sayama, Saitama, Japan

11:50 – 12:05

Czochralski Growth of [010] Semi-insulating β-Ga_2O_3 Crystals

J.D. Blevins,¹ S. Mou,¹ A. Neal,¹ D. Thomson,¹ G. Foundos,² K. Stevens,² and D. Look³

¹Air Force Research Laboratory (AFRL), Wright-Patterson AFB, USA
²Northrop-Grumman SYNOPTICS, USA
³Wright-State University, USA

12:05 – 12:20

β-Ga_2O_3 single crystals grown from thin seeds using the vertical Bridgman technique

E. Ohba,¹,² T. Kobayashi,¹ Y. Nakamura,¹ D. Ichikawa,¹ and K. Hoshikawa²

¹Fujikoshi Machinery Corp., Matsushiro-machi, Nagano, Japan
²Shinshu University, Nagano, Japan

12:20 – 12:35

Experimental Study and Modeling of Ga_2O_3 Epitaxial Growth by MOCVD in a CCS Reactor

M. Bogdanov,¹ A. Lobanova,¹ R. Talalaev,¹ A. Galyukov,² F.L. Alema,³ B. Hertog,³ and A. Osinsky³

¹STR Group, Inc. – Soft-Impact, Ltd., St. Petersburg/Russia
²STR US, Inc., Richmond, VA, USA
³Agnitron Technology, Inc., Eden Prairie, MN, USA

12:35 – 12:50

Surface diffusion and elementary growth process in homoepitaxial growth of β-Ga_2O_3 layers on (100)-oriented substrates

R. Schewski, D. Meiling, M. Baldini, Z. Galazka, G. Wagner, and M. Albrecht
Leibniz Institute for Crystal Growth, Berlin, Germany

13:00 – 14:30

LUNCH

14:30 – 16:00

Development of Lateral Ga_2O_3 FETs for RF and Switch Applications

G. Jessen
Air Force Research Laboratory, WPAFB, OH, USA

15:00 – 15:15

Bipolar heterodiodes comprising n-type β-gallium oxide and p-type zinc cobalt oxide and nickel oxide

P. Schlupp, D. Splith, H. von Wenckstern, and M. Grundmann
Universität Leipzig, Leipzig, Germany
15:15 – 15:30 O10 Delta-doped β-Ga$_2$O$_3$ Metal Semiconductor Field Effect Transistors with Regrown Ohmic Contacts
Z. Xia,1 S. Krishnamoorthy,1 C. Joishi,1,3 S. Bajaj,1 Y. Zhang,1 M. Brenner,1 S. Lodha,2 and S. Rajan1,2
1Department of Electrical and Computer Engineering, Ohio State Univ., USA
2Department of Materials Science and Engineering, Ohio State Univ., USA
3Indian Institute of Technology Bombay, Mumbai, India

15:30 – 15:45 O11 Minimized Self-heating Effect of β-Ga$_2$O$_3$ Nano-membrane Field-effect Transistors on Sapphire Substrate
Purdue University, West Lafayette, IN, U.S.A

15:45 – 16:00 O12 Ultra-Low Forward-Voltage Ga$_2$O$_3$ MOSSBDs
K. Sasaki,1,2 Q.T. Thieu,1,2 D. Wakimoto,1,2 A. Kuramata,1,2 and S. Yamakoshi1,2
1Novel Crystal Technology, Inc., Saitama, Japan
2Tamura Corporation, Saitama, Japan

16:00 – 16:20 BREAK

16:20 – 18:05 Session Cha2
Chair Oliver Bierwagen, PDI Berlin, Germany

16:20 – 16:50 I4 Temperature dependence of the full dielectric tensor of monoclinic Ga$_2$O$_3$
C. Sturm
Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Germany

16:50 – 17:05 O13 Optical and electronic properties of monoclinic Ga$_2$O$_3$ unravelled
M. Schubert,1,2,3 A. Mock,1 R. Korlacki,1 S. Knight,1 V. Darakchieva,2 B. Monemar,2,4
H. Murakami,1,5,6 Y. Kumagai,1,5,6 K. Goto,5,6 and M. Higashiwaki7
1Univ. of Nebraska-Lincoln, U.S.A.
2Linkoping University, Sweden
3Leibniz Institute for Polymer Research, Dresden, Germany
4Global Innovation Research Organization, Tokyo Univ. of Agriculture and Technology, Japan
5Department of Applied Chemistry, Tokyo Univ. of Agriculture and Technology, Japan
6Tamura Corporation, Sayama, Saitama, Japan
7Nat. Inst. of Information and Communications Technology, Tokyo, Japan

17:05 – 17:20 O14 Photo-assisted capacitance-voltage characterization of interface states in SiO$_2$/β-Ga$_2$O$_3$ (010) MOS capacitors
H. Masten, J. Phillips, and R.L. Peterson
University of Michigan, Ann Arbor, MI, USA

17:20 – 17:35 O15 Bandgap, excitons, phonons, and thermal conductivity of alpha-, beta-, gamma- and epsilon-Ga$_2$O$_3$
N. Jankowski,1 R. Gillen,1 G. Callsen,1,2 C. Nenstiel,1 F. Nippert,1 A. Hoffmann,1
J.S. Reparaz,3 P.O. Vaccaro,3,4 A.R. Goñi,3,4 M. Campoy-Quiles,3 M. Bosi,5
R. Fornari,6,5 J. Schörmann,7 M. Kracht,7 A. Karg,7 M. Eickhoff,7 T. Oshima,9
F.H. Teherani,10 P. Bove,10 V.E. Sandana,10 D. Rogers,10 C. Ton-That,11 Z. Galazka,12
J. Furthmüller,13 F. Bechstedt,13 and M.R. Wagner1
17:35 – 17:50 O16 Optical properties of metastable α- and ε-Ga$_2$O$_3$

M. Feneberg,¹ A. Karg,²,³ M. Kracht,² J. Schörmann,² M. Eickhoff,²,³ and R. Goldhahn¹

¹Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
²Justus-Liebig-Universität Gießen, Gießen, Germany
³University of Bremen, Bremen, Germany

17:50 – 18:05 O17 Impact of Neutron Irradiation on Electronic Defects in β-Ga$_2$O$_3$

A.R. Arehart¹, E. Farzana¹, T.E. Blue², and S.A. Ringel¹

¹Electrical & Computer Engineering, The Ohio State University, Columbus, OH, USA
²Mechanical & Aerospace Engineering, The Ohio State University, Columbus, OH, USA

Thursday September 14th

09:00 – 10:30 Session Cha3

Chair Steven Ringel, Ohio State Univ., USA

09:00 – 09:30 15 Doping and defects in β-Ga$_2$O$_3$

K. Irmscher

Leibniz Institute for Crystal Growth, Berlin, Germany

09:30 – 09:45 O18 Electronic properties of residual donor in unintentionally doped β-Ga$_2$O$_3$

N.T. Son,¹ K. Goto,²,³ R. Togashi,² H. Murakami,² Y. Kumagai,² A. Kuramata,³ M. Higashiwaki,⁴ S. Yamakoshi,³ and B. Monemar¹,²

¹Department of Physics, Chemistry and Biology, Linköping University, Sweden
²Tokyo University of Agriculture and Technology, Tokyo, Japan
³Tamura Corporation, Saitama, Japan
⁴National Institute of Information and Communications Technology, Koganei, Tokyo, Japan

09:45 – 10:00 O19 Reliability Study on Stress-induced Electron Trapping in Al$_2$O$_3$/β-Ga$_2$O$_3$ MOSCAPs

M.S.L. Narayanan,¹ X. Qin,¹ P. Zhao,¹ P. Bolshakov,¹ A. Kuramata,² L. Larcher,³ R.M. Wallace,¹ and C.D. Young¹

¹University of Texas at Dallas, Richardson, TX, USA
²Tamura Corp. and Novel Crystal Technology, Saitama, Japan
³University of Modena and Reggio-Emilia, Modena, Italy
10:00 – 10:15
O20 Photo- and electroluminescence of chromium doped β-Ga$_2$O$_3$
A. Fiedler, Z. Galazka, and K. Irmscher
Leibniz-Institute for Crystal Growth, Berlin, Germany

10:15 – 10:30
O21 Luminescence in the bulk and near-surface regions of β-Ga$_2$O$_3$ crystals
C. Ton-That,¹ T. Huynh,¹ L.L. C. Lem,¹ A. Puaud,² N. Jankowski,³ T.P. Nguyen,² A. Hoffmann,³ M.R. Wagner,³ and M.R. Phillips¹
¹University of Technology, Sydney, Ultimo, Australia
²Institut des Matériaux Jean Rouxel, Université de Nantes, France
³Technische Universität Berlin, Berlin, Germany

10:30 – 11:45
BREAK & POSTER SESSION 1 (Posters P1 – P50)

11:45 – 13:00
Session Mat2
Chair Shizuo Fujita, Univ. of Kyoto, Japan

11:45 – 12:15
I6 Development of Amorphous Gallium Oxide Semiconductor and its Application to future Electronic Devices
J. Kim
Materials Research Center for Element Strategy, Tokyo Inst. of Technology, Yokohama, JAPAN

12:15 – 12:30
O22 Epitaxial Growth and Characterization of α-, β-, and ε-Phases of Ga$_2$O$_3$
Y. Yao,¹ L.A.M. Lyle,¹ S. Okur,² G.S. Tompa,² T. Salagaj,² N. Sbrockey,² R.F. Davis,¹ and L.M. Porter¹
¹Carnegie Mellon University, Pittsburgh, PA, United States.
²Structured Materials Industries, Inc., Piscataway, NJ, United States

12:30 – 12:45
O23 MBE-Growth and structural properties of ε-Ga$_2$O$_3$
A. Karg,¹,² M. Kracht,² M. Schowalter,¹ B. Gerken,¹ J. Bläsing,³ M. Rohnke,⁴ J. Schörmann,² J. Janek,⁴ A. Rosenauer,¹ and M. Eickhoff¹
¹University of Bremen, Bremen, Germany
²Physical Institute, University Giessen, Giessen, Germany
³Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
⁴Physical-Chemical Inst., University Giessen, Giessen, Germany

12:45 – 13:00
O24 MOVPE growth of homoepitaxial β-Ga$_2$O$_3$ layers on misoriented (100) and (001)-oriented substrates for power device applications
G. Wagner, M. Baldini, M. Albrecht, A. Fiedler, Z. Galazka, K. Irmscher, and R. Schewski
Leibniz Institute for Crystal Growth, Berlin, Germany

13:00 – 14:30
LUNCH

14:30 – 15:30
Session Mod1
Chair Gregg Jessen, Air Force Research Lab., Wright-Patterson AFB, USA

14:30 – 15:00
I7 First-principles modeling of sesquioxide semiconductors
H. Peerlaers
Materials Department, University of California, Santa Barbara, CA, USA
15:00 – 15:15 O25 Computational Approaches for the High-Throughput Screening and Design of New Transparent Conducting Oxides
C. Sutton, L.M. Ghiringhelli, and M. Scheffler
Fritz Haber Institute, Max Planck Society, Berlin, Germany

15:15 – 15:30 O26 Rigorous modeling of Schottky barrier diode characteristics and its application to Schottky diodes on β-Ga₂O₃ and In₂O₃
D. Splith, H. von Wenckstern, and M. Grundmann
Institut für Festkörperphysik, Universität Leipzig, Leipzig, Germany

15:30 – 16:45 Session Dev2
Chair Marko Tadjer, NRL Washington, USA

15:30 – 16:00 I8 Advances in Ga₂O₃ MOSFETs for Power and Radiation-Hard Electronics
M.H. Wong
National Institute of Information and Communications Technology, Tokyo, Japan

16:00 – 16:15 O27 Normally-off Gallium Oxide MOSFETs formed by BCl₃ Plasma Etching
1Air Force Research Laboratory, WPAFB, OH, USA
2KBRwyle, Dayton, OH, USA
3George Mason University, Fairfax, VA, USA

16:15 – 16:30 O28 Demonstration of β-(AlₓGa₁₋ₓ)₂O₃/β-Ga₂O₃ (010) Modulation Doping Field Effect Transistors with Ge as dopant grown by plasma-assisted molecular beam epitaxy
1Materials Department, University of California Santa Barbara, U.S.A.
2Electrical and Computer Engineering Department, University of California Santa Barbara, U.S.A.

16:30 – 16:45 O29 Extending a (Ferroelectric) Photovoltaic Frontier with Gallium Oxide
1Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain
2Nanovation, Châteaufort, France
3GEMaC, UVSQ-CNRS, Paris Saclay University, Versailles, France
4School of Engineering, University of Warwick, Coventry, U.K.
5Univ. of Technology Sydney, Broadway, Australia
6Center for Quantum Devices, ECE Department, Northwestern Univ., USA

16:45 BREAK

17:00 Excursion & Workshop Banquet
Friday September 15th

09:00 – 10:30 Session Mat3

Chair Vladimir Nikolaev, Ioffe Institute, St. Petersburg, Russia

09:00 – 09:30 19 Growth of Different Ga2O3 Polymorphs and Their Applications
S. Fujita
Photonics and Electronics Science and Engineering Center, Kyoto University
Katsura, Kyoto, Japan

09:30 – 09:45 O30 Crystal Structure and Band Gap Variation with Aluminum Content in Pulsed Laser Deposited Aluminum Gallium Oxide Films
B.W. Krueger, F.S. Ohuchi, and M.A. Olmstead
Department of Physics, Univ. of Washington, Seattle, USA
Depts. Materials Science and Engineering, Univ. of Washington, Seattle, USA

09:45 – 10:00 O31 Epitaxial growth of ε-Al3xGa2-2xO3 alloy films on c-plane AlN templates by mist chemical vapor deposition
D. Tahara, H. Nishinaka, S. Morimoto, N. Miyauchi, and M. Yoshimoto
1Dept. Electronic Systems, Kyoto Institute of Technology, Kyoto, Japan
2Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Kyoto, Japan

10:00 – 10:15 O32 Kinetics and thermodynamics of Ga2O3, In2O3, and (InxGa1-x)2O3 during molecular beam epitaxy
P. Vogt and O. Bierwagen
Paul-Drude-Institut für Festkörperelektronik, Berlin, Germany

10:15 – 10:30 O33 Charge transport in highly doped (010) β-Ga2O3 single crystals made by edge-defined film-fed growth
Z. Kabilova, C. Kurdak, and R.L. Peterson
1Electrical Engin. and Comp. Science, University of Michigan, Ann Arbor, MI, USA
2Physics Dept, University of Michigan, Ann Arbor, MI, USA

10:30 – 11:45 BREAK & POSTER SESSION 2 (Posters P51 – P101)

11:45 – 12:15 I10 Pulsed Laser Deposition of Aluminum Gallium Oxides for Deep-UV Detector Applications
D.-S. Wuu
Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan

12:15 – 12:30 O34 Towards Modulation-doped β-(AlGa)2O3/ Ga2O3 Field Effect Transistors for High Frequency Electronics
S. Krishnamoorthy, Z. Xia, C. Joishi, S. Bajaj, Y. Zhang, M. Brenner, S. Lodha, and S. Rajan
1ECE Department, The Ohio State University, Columbus, USA
2MSE Department, The Ohio State University, Columbus, USA
3Electrical Engineering, Indian Institute of Technology- Bombay, India
12:30 – 12:45 O35 Improved Blocking Voltage and Reduced Reverse Current in Annealed Vertical Homoepitaxial Pt/β-Ga$_2$O$_3$ Schottky Diodes

M.J. Tadjer,¹ B.N. Feigelson,¹ J.A. Freitas Jr.,¹ and A. Kuramata²

¹U.S. Naval Research Laboratory, Washington DC, USA
²Tamura Corporation and Novel Crystal Technology, Inc., Saitama, Japan.

12:45 – 13:00 O36 Carrier transport and spectral responsivity studies in MBE Grown β-Ga$_2$O$_3$ MSM Solar-Blind Deep-UV Photodetector

A.S. Pratiyush,¹ S. Krishnamoorthy,² S.V. Solanke,¹ Z. Xia,² R. Muralidharan,¹ S. Rajan,² and D.N. Nath¹

¹Centre for Nano Science and Eng. (CeNSE), Indian Institute of Science (IISc), Bangalore, India
²Department ECE, The Ohio State University, Columbus, USA

13:00 – 14:30 LUNCH

14:30 – 16:00 Session Mat4

Chair Akito Kuramata, Novel Crystal Technol., Saitama, Japan

14:30 – 15:00 I11 Halide Vapor Phase Epitaxy of β-Ga$_2$O$_3$ Homoepitaxial Layers Using O$_2$ and H$_2$O as Oxygen Sources

K. Konishi

Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo, Japan

15:00 – 15:15 O37 Growth of Ge-doped (001) β-Ga$_2$O$_3$ on (001) β-Ga$_2$O$_3$ substrate by plasma-assisted molecular beam epitaxy

S.-H. Han, E. Ahmadi, A. Mauze, T. Mates, and J.S. Speck

Materials Department, University of California Santa Barbara, USA

15:15 – 15:30 O38 The Role of Thermal Expansion of β-Ga$_2$O$_3$ On Strain Induced Heteroepitaxial Structures

M.S. Goorsky, C. Li, and E. Rosker

Dept. Mat. Sci. Eng., University of California, Los Angeles, USA

15:30 – 15:45 O39 Metalorganic chemical vapour deposition of thin films of (Ga$_{1-x}$Al$_x$)$_2$O$_3$ using substituted acetylacetonate precursors, (Ga$_{1-x}$Al$_x$)(acac)$_3$

P. Jaiswal and S.A. Shivashankar

Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India

15:45 – 16:00 O40 Phase Control of Ga$_2$O$_3$ Films Deposited by Atomic Layer Epitaxy

V. Wheeler,¹ N. Nepal,¹ L. Nyakiti,² D. Boris,¹ S.Walton,¹ D.Meyer,¹ and C. Eddy Jr.¹

¹U.S. Naval Research Laboratory, Washington DC, USA
²Dept. Material Science and Engineering, Texas A&M University, USA

16:00 – 16:20 BREAK

16:20 – 17:35 Session Cha4
I12 Characterization of EFG-grown β-Ga$_2$O$_3$ single crystal by using Synchrotron X-ray topography, X-ray diffraction and Raman Y. Yao
Japan Fine Ceramics Center, Nagoya, Japan

16:50 – 17:05 O41 Characterization of Defects in EFG-Grown β-Ga$_2$O$_3$ Single Crystals
O. Ueda,¹ N. Ikenaga,² K. Koshi,³,⁴ K. Iizuka,³,⁴ A. Kuramata,³,⁴ K. Hanada,⁵ T. Moribayashi,⁵ S. Yamakoshi,³,⁴ and M. Kasu⁵
¹Graduate School of Engineering, Kanazawa Institute of Technology, Minato, Tokyo Japan
²Department of Electrical and Electronic Engineering, Kanazawa Institute of Technology, Nonoichi, Ishikawa, Japan
³Tamura Corporation, Sayama, Saitama, Japan
⁴Koha Co., Ltd., Nerima, Tokyo, Japan
⁵Department of Electrical and Electronic Engineering, Saga University, Saga, Japan

17:05 – 17:20 O42 Ga$_2$O$_3$ conductivity anisotropy analysed by van-der-Pauw measurements
C. Golz,¹ V. Santos,¹ F. Hatami,¹ W.T. Masselink,¹ Z. Galazka,² and O. Bierwagen³
¹Physics Institute, Humboldt-Universität zu Berlin, Germany.
²Leibniz Institute of Crystal Growth, Berlin, Germany.
³Paul-Drude-Institut für Festkörperphysik, Berlin, Germany.

17:20 – 17:35 O43 Charge Trapping Processes in Ga$_2$O$_3$ Schottky Diodes
C. De Santi,¹ M. Meneghini,¹ M.H. Wong,² K. Goto,³,⁴ H. Murakami,⁴ Y. Kumagai,⁴ A. Kuramata,³ S. Yamakoshi,³ M. Higashiwaki,² G. Meneghesso,¹ and E. Zanoni¹
¹Department of Information Engineering, University of Padova, Padova, Italy
²Nat. Inst. of Information and Communications Technology, Tokyo, Japan
³Tamura Corporation, Sayama, Saitama, Japan
⁴Department of Applied Chemistry, Tokyo Univ. of Agriculture and Technology, Tokyo, Japan

17:35 – 17:45 Final remarks, farewell
P1 **Pulsed magnetron assisted radio frequency sputter deposition of β-Ga$_2$O$_3**

P. Schurig, F. Michel, M. Becker, A. Polity, and P.J. Klar
Institute of Experimental Physics I and Center for Material Research, Justus Liebig University Giessen, Giessen, Germany

P2 **Structure property relationships in gallium oxide thin films grown by ion beam sputter deposition**

M. Becker, P. Schurig, F. Michel, A. Polity, and P.J. Klar
Institute for Exp. Physics I and Center for Materials Research (LaMa), Justus Liebig University Giessen, Germany

P3 **Electron Spin Resonance study of Sn doped α-Ga$_2$O$_3**

J. Kikawa, M. Becker, P. Schurig, F. Michel, A. Polity, and Y. Nanishi
Ritsumeikan University, Kusatsu, Shiga, Japan

P4 **Study on surface band bending of α-Ga$_2$O$_3$ grown by mist-CVD**

Y. Fujiki, T. Matsuda, T. Shinohe, T. Araki, and Y. Nanishi
Ritsumeikan University, Kusatsu, Shiga, Japan

P5 **Angle-resolved photoemissions spectroscopy on MgGa$_2$O$_4$: band structure, band bending and phase transition**

B. Thielert, C. Janowitz, Z. Galazka, and M. Mulazzi
Humboldt-Universität zu Berlin, Institut für Physik, Berlin, Germany
Leibniz-Institut für Kristallzüchtung, Berlin, Germany

P6 **Reversible modulation of the UV band in β-Ga$_2$O$_3**

M. Peres, L.C. Alves, E. Alves, K. Lorenz, T.S. Monteiro, S. Cardoso, M. Alonso-Orts, E. Nogales, B. Méndez, E.G. Villora, and K. Shimamura
IPFN, Instituto Superior Técnico (IST), Campus Tecnológico e Nuclear, Bobadela LRS, Portugal
C2TN, Instituto Superior Técnico (IST), Campus Tecnológico e Nuclear, Bobadela LRS, Portugal
Instituto de Engenharia de Sistemas de Computadores-Microsystems and Nanotechnology (INESC-MN), Lisboa, Portugal
Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid, Spain
National Institute for Materials Science, Tsukuba, Japan

P7 **Cathodoluminescence spectra of Si-doped and Si-implanted β-Ga$_2$O$_3$ single crystals**

T. Onuma, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, and M. Higashiwaki
Department of Applied Physics, Kogakuin University, Tokyo, Japan
National Institute of Information and Communications Technology, Tokyo, Japan

P8 **A comprehensive study of lattice dynamics in ε-Ga$_2$O$_3**

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), UAB, Bellaterra, Spain
Institut für Festkörperphysik, Technische Universität Berlin, Berlin, Germany
Catalan Institute for Research and Advances Studies (ICREA), Barcelona, Spain
IMEM-CNR Institute, Parma, Italy
Dept. Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy

P9 **Bandgap engineering of single phase β-Ga$_2$O$_3$ epilayers grown by laser molecular beam epitaxy**

School of Electronic Science and Engineering, Nanjing University, China
P10 Scintillation and optical properties of Sn-doped Ga$_2$O$_3$ single crystals
Y. Usui, N. Kawano, G. Okada, N. Kawaguchi, and T. Yanagida
Graduate School of Material Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, JAPAN

P11 Comparative study of scintillation properties of Ga$_2$O$_3$ single crystals and ceramics
Y. Usui, T. Kato, N. Kawano, G. Okada, N. Kawaguchi, and T. Yanagida
Graduate School of Material Science, Nara Institute of Science and Technology (NAIST), Ikoma-shi, Nara, JAPAN

P12 Optical and Electrical Studies of Spray Coated Doped and Undoped β-Ga$_2$O$_3$ Thin Films
C. Schmidt, K. Förster, A. Fechner, and D.R.T. Zahn
Semiconductor Physics, Technische Universität Chemnitz, Chemnitz, Germany

P13 Fabrication of Si-doped α-Ga$_2$O$_3$ and its electrical properties
T. Uchida, R. Jinno, K. Kaneko, and S. Fujita
Graduate School of Engineering, Kyoto University, Kyoto, Japan

P14 The quality improvement of the GaN epi-layer on (-2 0 1) β-Ga$_2$O$_3$ substrate
Y.P. Lan,¹ C.C. Fan,² and C.Y. Chang²
¹Institute of Lighting and Energy Photonics, College of Photonics, National Chiao Tung University, Tainan City, Taiwan
²Institute of Electronics, National Chiao Tung University, Hsinchü, Taiwan

P15 Epitaxial growth of β-Ga$_2$O$_3$ and GaN/β-Ga$_2$O$_3$ heterostructures by halide vapor phase epitaxy
V. Nikolaev,¹,² S. Stepanov,¹ and A. Pechnikov¹
¹Perfect Crystals LLC, St. Petersburg, Russia
²Ioffe Institute, St. Petersburg, Russia

P16 Prospects of Heteroepitaxial beta-Ga$_2$O$_3$ - Extending the Frontier of Power Electronics
S.A.O. Russell,¹ A. Pérez-Tomás,² D.P. Hamilton,³ P.A. Mawby,¹ and M.R. Jennings¹
¹School of Engineering, University of Warwick, Coventry, UK.
²Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain
³School of Engineering and Sustainable Development, De Montfort University, Leicester, UK

P17 Direct bonding of gallium oxide and polycrystalline silicon carbide substrates using Surface-Activated-Bonding method
N. Hatta,¹ K. Yagi,¹ S. Watanabe,² A. Kuramata,² K. Konishi,³ C.-H. Lin,⁴ and M. Higashiwaki⁴
¹SICOXS Corporation, Chiyoda-ku, Tokyo, Japan
²Tamura Corporation, Sayama, Saitama, Japan
³Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
⁴National Institute of Information and Communications Technology, Koganei, Tokyo, Japan

P18 Study on the effect of anneal on the Ga$_2$O$_3$ film grown by MOCVD
Z. Ma, X. Dong, Y. Zhang, B. Zhang, and G. Du
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China

P19 Thermal stability and phase transition of ε-Ga$_2$O$_3$ polymorph
M. Pavesi,¹ V. Montedoro,¹ F. Mezzadri,² D. Klimm,³ I. Cora,³ A. Parisini,¹ A. Baraldi,¹ F. Boschi,¹ M. Bosi,⁵ C. Ferrari,⁵ E. Gombia,⁵ and R. Fornari¹⁵
¹Dept. of Mathematical, Physical and Computer Sciences, University of Parma, Italy
²Dept. of Chemistry, Life Sciences and Environmental Sustainability, Univ. of Parma, Italy
³Leibniz Institute for Crystal Growth (IKZ), Berlin, Germany
⁴Inst. for Technical Physics and Materials Science, Budapest, Hungary
⁵IMEM-CNR Institute, Area delle Scienze, Parma, Italy
P20 The real structure of ε-Ga$_2$O$_3$ and its relation to κ-phase

Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary

Department of Chemistry, University of Parma, Parco Area delle Scienze, Parma, Italy

Dept. of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze, Parma, Italy

IMEM-CNR, Parco Area delle Scienze, Parma, Italy

Slovak University of Technology, University Science Park Bratislava Centre, Bratislava, Slovak Republic

Department of Mineralogy, Eötvös Loránd University, Budapest, Hungary

P21 AC and DC characterization of γ-Ga$_2$O$_3$-containing glassceramic thin films
J. Remondina, M. Acciarri, A. Azarbod, N.V. Golubev, E.S. Ignat'eva, R.A. Mereu, A. Paleari, V.N. Sigaev, and R. Lorenzi

Department of Material Science, University of Milano-Bicocca, Milan, Italy

Department of Physics, University of Ferrara, Ferrara, Italy

P.D. Sarkisov International Laboratory of Glass-based Functional Materials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia

P22 Electrical properties of Schottky diodes fabricated on a (001) β-Ga$_2$O$_3$ single crystal substrate having line-shaped voids and small defects
T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, and M. Kasu

Saga University, Saga, Japan

Tamura Corporation and Novel Crystal Technology, Inc., Saitama, Japan

Kanazawa Institute of Technology, Tokyo, Japan

P23 Nanoindentation Measurements of Mechanical Properties of β-Ga$_2$O$_3$ Epitaxial Layers grown on c- and m-plane Al$_2$O$_3$ Substrates
L.I. Guzilova, A.S. Grashchenko, A.I. Pechnikov, S.I. Stepanov, and V.I. Nikolaev

Ioffe Institute, St. Petersburg, Russian Federation

Institute of Problems of Mechanical Engineering, St. Petersburg, Russian Federation

Perfect Crystals LLC, St. Petersburg, Russian Federation

Leibniz Institute for Crystal Growth, Berlin, Germany

P24 Electrical compensation mechanisms in Ga$_2$O$_3$
V. Prozheeva, K. Mizohata, J. Räisänen, M. Baldini, G. Wagner, and F. Tuomisto

Department of Applied Physics, Aalto University, Finland

Department of Physics, University of Helsinki, Finland

Leibniz Institute for Crystal Growth, Berlin, Germany

P25 Characterization of electrical properties of α-Ga$_2$O$_3$ films on m-plane sapphire substrates

Department of Information and Electronics, Tottori University, Tottori, Japan

FLOSFIA, Nishikyo-ku, Kyoto, Japan

P26 Shallow and deep trap levels in β-Ga$_2$O$_3$ single crystals
A. Luchechko, V. Vasylytsiv, L. Kostyk, and O. Tsvetkova

Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, Lviv, Ukraine

P27 Characteristics of Mg and Zn doped β-Ga$_2$O$_3$ thin films and their Schottky diodes grown by metal-organic chemical vapor deposition
S. Lee, H. Ahn, Y.M. Yu, and M. Yang

Department of Materials Engineering, Korea Maritime and Ocean University, Busan, Korea

LED-Marine Convergence Technology R&D Center, Pukyong National University, Busan, Korea

P28 High-performance Schottky diodes based on Cr-doped β-Ga$_2$O$_3$
P29 Photoresponsivity of α-Ga$_2$O$_3$-based deep UV photodetector grown by mist CVD
K. Rikitake, T. Kobayashi, T. Yamaguchi, T. Onuma, and T. Honda
Faculty of Electrical Engineering and Electronics, Graduate School of Engineering and Department of Applied Physics, Kogakuin University, Tokyo, Japan

P30 Graphene-β-Ga$_2$O$_3$ heterojunction for highly sensitive deep ultraviolet photodetector application
L.-B. Luo
School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui, P. R. China

P31 Synthesis of Ga$_2$O$_3$ nanowires for solar-blind ultraviolet photodetection
F.-X. Liang
School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China

P32 Investigation of the electronic structure and optical absorption of Sn-doped β-Ga$_2$O$_3$
V. Abdrakhmanov,1 D. Zav’yalov,1 and V. Nikolaev2,3
1Volgograd State Technical University, Volgograd, Russia
2Perfect Crystals LLC, St. Petersburg, Russia
3Ioffe Institute, Petersburg, Russia

P33 Investigation of the structural, anisotropic and electronic properties of β-Ga$_2$O$_3$ and α-Ga$_2$O$_3$ under pressures
L. Dong, R. Jia, L. Yuan, B. Peng, H. Zhang, and Y. Zhang
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an, China

P34 FMO-DFTB study of the electron transfer between Ga$_2$O$_3$ and water
R. Anvari,1,2 D. Spagnoli,2 G. Parish,1 and B. Nener1
1School of Electrical, Electronics and Computer Engineering, University of Western Australia
2School of Molecular Sciences, University of Western Australia

P35 Theoretical study of the effect of the surface Ga$_2$O$_3$ on the characteristics of the GaN-based chemical sensor
R. Anvari,1,2 D. Spagnoli,2 G. Parish,1 and B. Nener1
1School of Electrical, Electronics and Computer Engineering, University of Western Australia
2School of Molecular Sciences, University of Western Australia

P36 Intrinsic carrier trapping and luminescence in β-Ga$_2$O$_3$: a theoretical study using an optimized hybrid functional
T. Frauenheim, Q. D. Ho, B. Aradi, and P. Deák
Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany

P37 Atomic signatures of local environment from core-level spectroscopy in β-Ga$_2$O$_3$
C. Cocchi,1,2,3 H. Zschiesche,1 D. Nabok,1,2,3 A. Mogilatenko,1,4 M. Albrecht,5 Z. Galazka,5
H. Kirmse,1 C. Draxl,1,2,3 and C. T. Koch1
1Physics Department, Humboldt-Universität zu Berlin, Berlin, Germany
2IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
3European Theoretical Spectroscopic Facility (ETSF)
4Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany
P38 Band-to-band transitions and hole effective mass anisotropy in β-Ga$_2$O$_3$
R. Korlacki,1 A. Mock,1 and M. Schubert1,2,3
1Department of Electrical and Computer Engineering, Univ. of Nebraska-Lincoln, USA
2Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden
3Leibniz Institute for Polymer Research, Dresden, Germany

P39 Magnetic properties of transition metal ion (Mn, Cr) implanted β-Ga$_2$O$_3$
R. Korlacki,1 A. Mock,1 and M. Schubert1,2,3
1Department of Electrical and Computer Engineering, Univ. of Nebraska-Lincoln, USA
2Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden
3Leibniz Institute for Polymer Research, Dresden, Germany

P40 The inherent transport anisotropy of rutile tin dioxide (SnO$_2$) and consequences for applications
O. Bierwagen1 and Z. Galazka2
1Paul-Drude-Institut für Festkörperelektronik, Berlin, Germany
2Leibniz Institut für Kristallzüchtung, Berlin, Germany.

P41 Determination of the Raman Tensor of monoclinic Ga$_2$O$_3$
C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann
Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Germany

P42 β-Ga$_2$O$_3$ Solar-Blind Photodetector with a high light to dark current ratio
H. Wang,1 Y. Wang,1 L. Du,1 Y. Liu,1 C. Wang,1 W. Mu,2 Z. Jia,2 Q. Xin,1 X. Tao,2 and A. Song1,3
1The Center of Nanoelectronics and School of Microelectronics, Shandong University, Jinan, China
2The State Key Laboratory of Crystal Materials, Key Laboratory of Functional Crystal Materials and Device, Shandong University, Jinan, China
3The School of Electrical and Electronics Engineering, University of Manchester, Manchester, U.K.

P43 Fabrication of UV Photodetectors Based On β-Ga$_2$O$_3$ Thin Films Grown by Pulsed Laser Deposition
R. Singh,1,2 B.R. Tak,1 S. Dewan,3 and V. Gupta3
1Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
2Nano Research Facility, Indian Institute of Technology Delhi, New Delhi, India
3Department of Physics and Astrophysics, University of Delhi, New Delhi, India

P44 (AlGa)$_2$O$_3$ Solar-Blind Photodetectors on Sapphire with Wider Bandgap and Improved Responsivity
Q. Feng, X. Li, G. Han, L. Huang, and Y. Hao
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi’an, People’s Republic of China

P45 Photoelectric conversion properties of a β-Ga$_2$O$_3$/c-Se photodiode
K. Mineo, S. Imura, K. Miyakawa, K. Hagiwara, M. Namba, H. Ohtake, and M. Kubota
NHK Science & Technology Research Laboratories, Setagaya-ku, Tokyo, Japan

P46 Development of β-Ga$_2$O$_3$ p-n diode using p-Cu$_2$O
Y. Yuda1, T. Watahiki1, A. Furukawa1, M. Yamamuka1, Y. Takiguchi2, and S. Miyajima2
1Mitsubishi Electric Corporation Advanced Technology R&D Center, Amagasaki, Hyogo, Japan
2Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan

T.S. Ngo, D.D. Le, and S.-K. Hong
Department of Materials Science and Engineering, Chungnam National University, Daejeon, Republic of Korea
P48 Thickness Effect on the Characteristics of ZnGa$_2$O$_4$ Transistor
L.-C. Cheng, C.-Yi Huang, and R.-H. Horng
Institute of Electronics Engineering, National Chiao Tung University, Taiwan

P49 Metal-assisted chemical etching of β-Ga$_2$O$_3$ for photodetectors
M. Kim, J. D. Kim, K. Chabak, and X. Li
1Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL, USA
2Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, Ohio, USA

P50 Deep ultraviolet photodetectors based on Gallium oxide/semiconductor heterojunctions
1Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing, China
2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
P51 **ICP-RIE etching of β-Ga$_2$O$_3$: Comprehensive investigation of plasma chemistry and temperature**
A.P. Shah and A. Bhattacharya
Tata Institute of Fundamental Research, DCMP & MS, Mumbai, India

P52 **Observation of red light-emitting devices from Ga$_2$O$_3$:Eu/GaAs structure**
Z. Chen,1,2 Z. Wu,1,2 K. Saito,3 T. Tanaka,3 Q. Guo,3 and W. Tang1,2
1Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing, China
2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
3Department of Electrical and Electronic Engineering, Synchrotron Light Application Center, Saga University, Saga, Japan

P53 **Characteristics of Ultraviolet Photodetectors Based on N-Incorporation Ga$_2$O$_3$ with and without Thermal Annealing**
R.-H. Horng, S.-H. Tsai, and C.-Y. Huang
Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan

P54 **Solar-blind photodetectors based on epitaxial ZnGa$_2$O$_4$ thin film**
S.-H. Tsai, C.-Y. Huang, and R.-H. Horng
Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan

P55 **Oxygen plasma induced performance enhancement of Pt(O$_x$/In$_2$O$_3$ Schottky barrier diodes**
J. Michel,1 T. Berthold,1 S. Krischok,1 M. Himmerlich,1 J. Rombach,2 O. Bierwagen,2 D. Splith,3
Z. Zhang,3 H. von Wenckstern,3 and M. Grundmann3
1Institut für Physik & Institut für Mikro- und Nanotechnologien MacroNano, Technische Universität Ilmenau, Germany
2Paul-Drude-Institut für Festkörperelektronik, Berlin, Germany
3Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik, Leipzig, Germany

P56 **Investigating β-Ga$_2$O$_3$ thin films grown by PLD on quartz glass**
L. Thyen, D. Splith, S. Müller, H. von Wenckstern, and M. Grundmann
Semiconductor Physics Group, Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Leipzig, Germany

P57 **Photo electrical characteristics of Ga$_2$O$_3$-GaAs structures**
V. Kalygina, I. Prudaev, I. Remizova, and O. Tolbanov
Tomsk State University, Tomsk, Russia

P58 **Strain dynamics of heteropitaxial grown alpha phase Ga$_2$O$_3$ and homoepitaxial growth of beta phase Ga$_2$O$_3$ as studied by synchrotron based x-ray diffraction and RHEED**
Z. Cheng,1 M. Hanke,1 O. Bierwagen,1 Z. Galazka,2 and A. Trampert1
1Paul Drude Institute for Solid State Electronics, Berlin, Germany
2Leibniz Institute for Crystal Growth, Berlin, Germany

P59 **Optical floating zone growth and characterization of single crystal β-Ga$_2$O$_3$**
E. Hossain, R. Kulkarni, R. Mondal, A. Bhattacharya, and A. Thamizhavel
Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research Mumbai, India

P60 **Growth and Characterization of pure and doped β-Ga$_2$O$_3$ Crystals by EFG method**
Z. Jia,1,2 W. Mu,1 Y. Yin, B. Wu, Y. Li, and X. Tao1
P61 **Determination of crystallographic orientation on growth habits of β-Ga$_2$O$_3$ grown by directional solidification method without seed**
K. Hoshikawa, 1 E. Ohba, 2 T. Kobayashi, 2 and A. Itoh 3
1Faculty of engineering, Shinshu University, Wakasato, Nagano, Japan
2Fujikoshi Machinery Corp., Matsushiro, Nagano, Japan
3Nippon Steel & Sumikin Technology Co., LTD., Futtus, Chiba, Japan

P62 **Columnar-shaped β-Ga$_2$O$_3$ Crystal Growth by Edge-defined, Film-fed Growth Technique**
T. Tanaka 1 and K. Hoshikawa 2
1Nissin Giken, Sayamagahara-hinoxme 384, Iruma, Japan
2Faculty of engineering, Shinshu university, Wakasato 4-17-1, Nagano, Japan

P63 **Electric properties of β-Ga$_2$O$_3$ single crystals grown by VB technique**
T. Taishi, 1 K. Hoshikawa, 1 E. Ohba, 2 T. Kobayashi, 2 M. Kado, 3 and H. Saitoh 3
1Faculty of Engineering, Shinshu University, Wakasato, Nagano, Japan
2Fujikoshi Machinery Corp., Matsushiro, Nagano, Japan
3Toyota Motor Corporation, Susono, Shizuoka, Japan

P64 **Features of β-Ga$_2$O$_3$ single crystal growth by Czochralsky method with NIKA-3 setup**
P.S. Shirshnev, 1 A.I. Pechnikov, 3 V.I. Nikolaev, 1,2,3 V.M. Krymov, 2 A.V. Kremleva, 1,2
1ITMO University, Saint-Petersburg, Russia
2Ioffe Physical-Techinal Institute RAS, Saint-Petersburg, Russia
3Perfect crystals LLC, Saint-Petersburg, Russia

P65 **Synthesis of large size phase-pure β-Ga$_2$O$_3$ by edge-defined film-fed growth**
K. Sun, X. Lian, S. Zhang, Y. Zhang, and H. Cheng
China Electronics Technology group Corporation 46th research institute, Tianjin, P. R. China

P66 **Epitaxial Growth and Characterization of CuGa$_2$O$_4$ Films**
H.L. Wei, 1,2 Z.W. Chen, 1,2 Z.P. Wu, 1,2 W. Cui, 1,2 Y.H. An, 1,2 Y.Q. Huang, 1,2 Y.S. Zhi, 1,2
and W.H. Tang 1,2
1Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing, China
2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China

P67 **Fe$_2$O$_3$-assisted Al thermal diffusion in Ga$_2$O$_3$ thin film for wide bandgap engineering**
W. Cui, 1,2 Z.P. Wu, 1,2 Z.W. Chen, 1,2 and W.H. Tang 1,2
1Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing, China
2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China

P68 **Investigations into a Strong Dependence of Electrical Conductivity Observed for β-Ga$_2$O$_3$ Thin Films on Sapphire Substrate Orientation**
E. Chikoidze, 1 C. Ton-That, 2 F.H. Teherani, 3 D.J. Rogers, 3 A. Perez-Tomas, 4 G. Sauthier, 4
V.E. Sandana, 3 P. Bove, 3 T.T. Huynh, 2 M. Phillips, 2 M.J. Sainz, 4 P. Chapon, 5 Y. Dumont, 1
R. McClintock, 6 and M. Razeghi 6
1GEMaC, UVSQ - CNRS, Paris-Saclay University, Versailles, France
2School of Mathematical and Physical Science, University of Technology Sydney, Australia

P69 \(\varepsilon \)-Ga\(_2\)O\(_3\) epitaxial growth on AlN and GaN templates using GaCl\(_3\) precursor by mist chemical vapor deposition
S. Morimoto, D. Tahara, H. Nishinaka, and M. Yoshimoto
Department of Electronic System Engineering, Kyoto Institute of Technology, Matsugasaki Sakyoku, Kyoto, Japan

P70 Synthesis of GaN by nitridation of \(\varepsilon \)-Ga\(_2\)O\(_3\) film
X. C. Xia, H. W. Liang, and Y. P. Chen
School of Microelectronics, Dalian University of Technology, Dalian, China

P71 Growth of \(\beta \)-Ga\(_2\)O\(_3\) Thin Films on SiC by Molecular Beam Epitaxy
N. Nepal, D.S. Katzer, V. Wheeler, B.P. Downey, D.F. Storm, M.T. Hardy, and D.J. Meyer
Electronics Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC, USA

P72 Growth of \(\beta \)-Ga\(_2\)O\(_3\)-based heterostructures by pulsed-laser deposition
R. Wakabayashi, K. Hattori, K. Yoshimatsu, K. Horiba, H. Kumigashira, and A. Ohtomo
1Department of Chemical Science and Engineering, Tokyo Institute of Technology, Japan
2Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Japan
3Materials Research Center for Element Strategy, Tokyo Institute of Technology, Japan

P73 Mechanical exfoliation of \(\beta \)-Ga\(_2\)O\(_3\) and its device applications
J. Kim, S. Oh, and J. Kim
Department of Chemical & Biological Engineering, College of Engineering, Korea University, Seoul, South Korea

P74 Homoeptaxial Growth on 2-Inch-Diameter (001) \(\beta \)-Ga\(_2\)O\(_3\) Substrates by Halide Vapor Phase Epitaxy
1Novel Crystal Technology, Inc., Sayama, Saitama, Japan
2Tamura Corporation, Sayama, Saitama, Japan
3Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan

P75 The role of Mn dopant on the structural and optoelectronic properties of Ga\(_2\)O\(_3\) films
1Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing, China
2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China

P76 Solar blind photodetector based on Al-doped spinel gallium oxide
1Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing, China
2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China

P77 High-quality, homoeptaxial Si-doped \(\beta \)-Ga\(_2\)O\(_3\) (010) and \(\beta \)-(Al\(_x\)Ga\(_{1-x}\))\(_2\)O\(_3\)/Ga\(_2\)O\(_3\) (010) heterostructures grown by pulsed laser epitaxy
S. Pacely, R. Budhani, S. Mou, K. Leedy, A. Neal, B. Urwin, K. Mahalingam, and B.M. Howe
Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, USA

P78 Optical and electronic properties of doped \(\beta \)-Ga\(_2\)O\(_3\) micro- and nanostructures
M. Alonso-Orts, J. Dolado, M. Peres, K. Lorenz, I. López, E. Nogales, J. Piqueras, and B. Méndez
1Department of Materials Physics, University Complutense of Madrid, Madrid, Spain
Indium incorporation into ε-Ga$_2$O$_3$ epitaxial thin films grown by mist chemical vapor deposition
N. Miyachi, H. Nishinaka, D. Tahara, S. Morimoto, and M. Yoshimoto
Department of Electronics, Kyoto Institute of Technology, Kyoto, Japan

Temperature-Dependent Growth of Ga$_2$O$_3$ on (0001) Sapphire Substrates by Halide Vapor Phase Epitaxy
M. Shimokawa,¹ Y. Sawada,¹ K. Konishi,¹ H. Murakami,¹,² B. Monemar,²,³ and Y. Kumagai¹,²
¹Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
²Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
³Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden

Combinatorial approach to (In, Ga, Al)$_2$O$_3$ – phase diagram, doping and influence of sub-oxide desorption
A. Werner, R. Hölldobler, D. Splith, M. Kneiss, J. Lenzner, M. Lorenz, H. von Wenckstern, and M. Grundmann
Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik

Growth and Application of Cr,Mg co-doped β-Ga$_2$O$_3$ Single Crystal As a Saturable Absorber
W. Mu, Z. Jia, and X. Tao
State Key Laboratory of Crystal Materials, Shandong University, Jinan, China

Work function study of β-Ga$_2$O$_3$ thin films using KPFM
B.R. Tak,¹ S. Dewan,² V. Gupta,² A.K. Kapoor,³ and R. Singh¹,²
¹Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
²Nano Research Facility, Indian Institute of Technology Delhi, New Delhi, India
³Department of Physics and Astrophysics, University of Delhi, New Delhi, India
⁴Solid State Physics Laboratory, New Delhi, India

Comparison of β-Ga$_2$O$_3$ UVC Photodetectors Fabricated by MOCVD and PLD
M. Razeghi,¹ R. McClintock,¹ J. Park,¹ D. Pavlidis,² F.H. Teherani,³ P. Bove,³ V.E. Sandana,³ and D.J. Rogers³
¹Center for Quantum Devices, ECE Department, Northwestern University, Evanston, USA
²ECE Department, Boston University, 8 Saint Mary’s Street, Boston, MA, USA
³Nanovation, Châteaufort, France

Characteristics β-Ga$_2$O$_3$ Photodetectors on Bulk Substrate and Sapphire
L. Huang, Q. Feng, G. Han, F. Li, X. Li, and Y. Hao
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an, China

β-Ga$_2$O$_3$ (100) MISFETs for power electronics applications
P. Kurpas,¹ E. Bahat-Treidel,¹ O. Hilt,¹ R.-S. Unger,¹ N. Volkmer,¹ I. Ostermay,¹ M. Baldini,² G. Wagner,² H. Gargouri,² F. Naumann,³ G. Tränkle,¹ and J. Würfl¹
¹Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH), Berlin, Germany
²Leibniz-Institut für Kristallzüchtung (IKZ), Berlin, Germany
³SENTECH Instruments GmbH, Berlin, Germany

Leakage current mechanisms of Al$_2$O$_3$/Ga$_2$O$_3$MOS capacitors
H. Zhang, L. Yuan, R. Jia, Y. Zhang, L. Dong, B. Peng, and Y. Zhang
School of Microelectronics, Xidian University, Xi’an 710071, People’s Republic of China

Ga$_2$O$_3$ Vertical Power Field-Effect Transistors with On/Off Ratio >10⁹
Z. Hu,¹ K. Nomoto,¹ W. Li,¹ L. Zhang,¹ J-H. Shin,¹ N. Tanen,¹ T. Nakamura,² D. Jena,¹ and H.G. Xing¹
¹Cornell University, Ithaca, New York, USA
²Hosei University, Tokyo, Japan
Epitaxy of Ga$_2$O$_3$ by O$_2$ Plasma & Ozone MBE (PAMBE & OMBE)
1Cornell University, Ithaca, New York, USA
2University of Notre Dame, Notre Dame, IN, USA

Characterization of ZrO$_2$ and HfO$_2$ Dielectrics Deposited by Thermal ALD on β-Ga$_2$O$_3$ Substrates
1University of Maryland, College Park, MD, USA
2Department of Physics, University of Illinois at Chicago, Chicago, IL, USA

The effect of growth pressure on epitaxial growing Ga$_2$O$_3$ films by MOCVD
H.W. Liang, X.C. Xia, and Y.P. Chen
School of Microelectronics, Dalian University of Technology, Dalian, China

Deposition of Wide Bandgap Ga$_2$O$_3$ and Related Alloys by MBE and PLD
1Ingram School of Engineering, Texas State University, San Marcos, TX, USA
2Department of Physics, University of Illinois at Chicago, Chicago, IL, USA

Sub-200°C microwave-assisted deposition of β-Ga$_2$O$_3$ thin films on sapphire
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, INDIA

Control of crystallographic structure of Ga$_2$O$_3$ on sapphire
R. Jinno, T. Uchida, K. Kaneko, and S. Fujita
Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan

Growth and Characteristics of (Al$_x$Ga$_{1-x}$)$_2$O$_3$ Films Using High-Oxygen-Pressure Pulsed Laser Deposition
S.-Y. Huang, C.-C. Wang, S.-H. Yuan, C.-M. Chen, and D.-Sing Wu
Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan (R.O.C.)

Influence of Ga incorporation into bixbyite In$_2$O$_3$ thin films on the performance of Schottky barrier diodes thereon
S. Lanzinger, D. Splith, H. von Wenckstern, and M. Grundmann
Semiconductor Physics Group, Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Leipzig, Germany

Sol-gel deposition and properties of In$_2$O$_3$ thin layers
B.E. Watts, S.A. Palomares-Sanchez, A. Baraldi, A. Parisini, S. Vantaggio, D. Klimm, and R. Fornari
1IMEM-CNR Institute, Area delle Scienze, Parma, Italy
2Facultad de Ciencias, Universidad Autónoma del Estado de Puebla (UASLP), San Luis Potosí, SLP, México
3Dept. of Mathematical, Physical and Computer Sciences, Parma Univ., Parma, Italy
4Leibniz Institute for Crystal Growth (IKZ), Berlin, Germany

Influence of Growth Rate on Halide Vapor Phase Epitaxy of c-In$_2$O$_3$ on c-Plane Sapphire Substrates
1Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
2Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
3Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden

Effect of Metal Additives on the Surface and in the Bulk of Tin Dioxide Thin Films on Characteristics of Resistive Hydrogen Sensors
A. Almaev, N. Maksimova, and E. Chernikov
P100 **Crystal structure and magnetic properties of Ga$_{2-x}$Fe$_x$O$_3$**

H. Yan,1,2 Z.W. Chen,1,2 Z.P. Wu,1,2 W. Cui,1,2 Y.H. An,1,2 Y.Q. Huang,1,2 Y.S. Zhi,1,2 and **W.H. Tang1,2**

1Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing, China

2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China

P101 **Stabilizing the metastable cubic γ phase Ga$_2$O$_3$ by Cu doping**

D.Y. Guo,1 Q. Liu,1 P.G. Li,1 and **W.H. Tang2**

1Center for Optoelectronic Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China

2Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing, China